

Australian Government

Geoscience Australia

Digital Earth Australia Hotspots Product Description

Document V3.0 – October 2023

Unclassified

Department of Industry, Science and Resources

Minister for Resources and Northern Australia: The Hon Madeleine King MP Secretary: Ms. Meghan Quinn PSM

Geoscience Australia

Chief Executive Officer: Dr James Johnson This paper is published with the permission of the CEO, Geoscience Australia

Geoscience Australia acknowledges the traditional owners and custodians of Country throughout Australia and acknowledges their continuing connection to land, waters and community. We pay our respects to the people, the cultures and the elders past and present.

© Commonwealth of Australia (Geoscience Australia) 2023.

With the exception of the Commonwealth Coat of Arms and where otherwise noted, this product is provided under a Creative Commons Attribution 4.0 International Licence. (http://creativecommons.org/licenses/by/4.0/legalcode)

Geoscience Australia has tried to make the information in this product as accurate as possible. However, it does not guarantee that the information is totally accurate or complete. Therefore, you should not solely rely on this information when making a commercial decision.

Geoscience Australia is committed to providing web accessible content wherever possible. If you are having difficulties with accessing this document, please email <u>clientservices@ga.gov.au</u>.

DOI http://dx.doi.org/10.4225/25/55ECC900C9DAF ECat: 70869 HPRM: D2023-68050

Table of Contents

Document History	4	
Hotspots – Summary Description	5	
Definition and Usage	5	
What is Digital Earth Australia Hotspots?	5	
Sources of Hotspots information	5	
How to interpret DEA Hotspots (and how not to…)	6	
DEA Hotspots portal data structure	8	
Contact us	8	
Additional information	8	
Hotspots – Data Access	9	
Interactive web maps	9	
File access	9	
Open Geospatial Consortium (OGC) compliant web services	9	
Notification services9		
Text files for the last 30 days9		
Imagery for VIIRS, MODIS and AVHRR10		
GA Historic Hotspot database 1	0	
Hotspots – Specification	1	
Sheet 1 Provenance and Algorithms 1	1	
Sheet 2 Technical Characteristics 1	5	
Sheet 2.1 Product Spatial Details1	5	
Sheet 2.2 Attributes	7	
Hotspots – Data Licence	21	
Sheet 3 Licensing and Attribution2	21	
GA Historic Hotspot database	22	
Sheet 4 GA Historic Hotspot database	22	
References	25	
Glossary2	27	

Document History

Revision Number	Date	Nature of Change and Reason	Author	Approval
0.0	14/10/2013	Hotspots First Draft	U61169	
0.1	25/10/2013	Get the right balance of plain English and technical detail	U21472	
0.2	18/11/2013	Edits and comments on the Attributes section	U21472	
0.3	17/12/2013	Edits and comments on the Attributes section	U21472	
0.4	16/01/2014	Edits and comments on the Attributes section	U21472	
0.5	26/02/2014	Conformity with v2 of Product Description Template.	Jeff Kingwell	For approval
1.0	13/03/14	Final version incorporating PDMG edits and removal of extraneous Platform and Sensor fields.	C Penning	For approval
1.1	11/04/2014	Edits to incorporate new Sentinel links	U61169	For approval
1.2	18/07/2014	Removal of platform and sensor characteristics per email D2014- 145819	U61169	Adam Lewis 22 July 2014
1.3	28/08/2015	Minor revisions to licensing	Arek Drozda	Adam Lewis D2015- 147919
1.4	29/7/2016	Edits to incorporate new data source	U32789	
1.5	15/08/2019	Minor revisions to algorithms, URLs, name changes	U32789	
1.6	15/05/2020	Added disclaimer, minor revisions to algorithm details and versions and technical characteristics	U32789	Simon Oliver D2020- 64302
1.7	06/10/2020	Updated algorithm details, data access	U32789	Simon Oliver D2020- 134121
1.8	24/09/2021	Added algorithm details, data access	U32789	Simon Oliver
1.9	3/11/2022	Updated algorithm details, updated limitations and data access	U50854	Simon Oliver
2.0	20/12/2022	Updated licensing details, removal of GA AVHRR algorithm		Norman Mueller
3.0	25/10/2023	Major document reformat and revalidation, check and update all algorithm versions, update document template, reformat tables, update doco for Himawari-9	U37443	Tom McAdam

Hotspots – Summary Description

Definition and Usage

Name: Digital Earth Australia Hotspots (previously called Sentinel Hotspots) **Abbreviation**: DEA Hotspots

What is Digital Earth Australia Hotspots?

Digital Earth Australia (DEA) Hotspots is a national bushfire monitoring system that provides timely information about hotspots to emergency service managers and critical infrastructure providers across Australia. Updated with new information every 10 minutes, the mapping system uses satellite sensors to detect areas producing high levels of infrared radiation (called Hotspots) to allow users to identify potential fire locations with a possible risk to communities and property.

DEA Hotspots is not published in real time and should not be used for safety of life decisions.

There are two versions of the DEA Hotspots system:

- DEA Hotspots public version: https://hotspots.dea.ga.gov.au/
 - Available for anyone to access and use
- DEA Hotspots secure users' version: https://hotspots.dea.ga.gov.au/login
 - Available for emergency managers and associated organisations
 - Provides priority access to the system during periods of high demand
 - Includes additional sources of Hotspot information
 - To apply for access, email earth.observation@ga.gov.au

Sources of Hotspots information

- Digital Earth Australia (DEA) Hotspots is managed by Geoscience Australia (GA) on behalf of its partners.
- Each Hotspot is represented by a spot on the map, derived from (a growing number of) satellite-born instruments that detect light in the thermal wavelengths.
- Typically, the satellite data are processed with a specific algorithm that highlights areas with an unusually high temperature; a 'Hotspot'. In principle, however, Hotspots may be sourced from non-satellite sources.
- DEA Hotspot sources include the:
 - Moderate Resolution Imaging Spectroradiometer (MODIS) sensor on the National Aeronautics and Space Administration (NASA) Terra and Aqua polar orbiting satellites
 - Advanced Very High Resolution Radiometer (AVHRR) nighttime imagery from the National Oceanic and Atmospheric Administration (NOAA-19) polar orbiting satellite
 - Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polarorbiting Partnership (NPP) satellite and NOAA-20 polar orbiting satellite
 - Advanced Himawari Imager (AHI) sensor operated by the Japan Meteorological Agency (JMA) on the Himawari-9 geostationary satellite

Table 1: Satellite sources of information in DEA Hotspots and the sensor and algorithms used to generate Hotspots.

Satellite	Sensor	Algorithm
Aqua	MODIS	MOD14
Terra		Landgate MOD14
		Landgate MODIS Daytime
		Landgate MODIS Nighttime
Himawari-9	AHI	Landgate AHI
		BRIGHT AHI
NOAA-19	AVHRR	Landgate AVHRR
NOAA-20	VIIRS	AFIMG
		AFMOD
		Landgate Daytime VIIRS algorithm
		Landgate Nighttime VIIRS algorithm
Suomi NPP	VIIRS	AFIMG
		AFMOD
		Landgate Daytime VIIRS algorithm
		Landgate Nighttime VIIRS algorithm

- Hotspots are generated using both visible and thermal sensor information.
- At best, hotspots information is 17 minutes old (this is how long it takes to download and process data into hotspots after each satellite pass).
- The Himawari-9 satellite is a geostationary satellite, which covers Australia at all times, and provides updates every 10 minutes, however the information is not published in real time.
- All other satellites pass over a given area up to 4 times a day, and each pass covers only a part of Australia, which means some fires are not detected because the satellite was not looking over that area at the appropriate time.

How to interpret DEA Hotspots (and how not to...)

- Hotspots can indicate possible active fires in some circumstances. Taken as an ensemble, Hotspots provide an overview of thermal activity in Australia and capture the pattern of possible fires across the Australian continent overtime.
- Emergency management agencies use Hotspots as one of many operational data feeds to inform their broad situationalawareness of, and at times tactical response to, fires.
- DEA Hotspots should not be used for safety of life decisions. For local updates and alerts, please refer to your state emergencyor fire service.
- Hotspots are not presented in real-time and not designed to be used in isolation of other data sources. It is not accurate enough to be relied upon for time-critical detection and location of fires.
- The system is not isolated to emergency service usage; it can also be used by environment and climate change researchers, land managers, media, policy makers and the broader public.

Figure 1: Screen capture from DEA Hotspots showing an example of a fire in northern Western Australia. This interface can be accessed via https://hotspots.dea.ga.gov.au/.

- The colour of the spot represents the time the Hotspot was last observed by a passing satellite (e.g., 0-2 hours) (Figure 1). The colour does not indicate severity.
- The size of the Hotspots does not indicate the size of the fire.
 - If you zoom in on the map you will notice that the size of the Hotspot dot will change.
- The Hotspot location on any map (no matter how detailed) is only accurate to ± 375 m at best (VIIRS).
- False positives (showing a Hotspot without an underlying cause) are possible.
- Hotspots are potential bushfires, but could also indicate other phenomena, such as black soils, gas fires, heavy industry, furnaces, smoke plumes, jet contrails and hot rocks.
- Not all fires will be detected as Hotspots.

V3.0

- False negatives (failing to show a Hotspot, despite a heated land surface, fire, etc.) are possible. Some heat sources may be too small, not hot enough, or obscured by thick smoke or cloud.
- Small and brief fires can also be omitted from Hotspot images due to topography (de Klerk, 2008), the spatial resolution of the imagery being too coarse, or the timing of the satellite overpass not coinciding with peak fire intensity (Bradley and Millington, 2006; Smith *et al.*, 2007; Hawbaker *et al.*, 2008).
- Depending on the sensor, generally, a flaming or smouldering fire would need to be at least 1,000 m² to be recognised as a Hotspot. Under exceptional (and rare) conditions (no cloud, smoke, wind etc.), a flaming fire at 50m² may be detected (Giglio *et al.*, 2003a).
- Geostationary satellite derived products algorithms may be optimised for day or night conditions. For algorithms such as BRIGHT (Biogeographical Region and Individual Geostationary HHMMSS Threshold algorithm) that provide hotspots every 10 minutes, 24 hours per day, temporal windows approximately +/- 1 hour of sunset and sunrise are considered unreliable periods.
- No Hotspots are produced if satellite data is not received (e.g., for AHI, 0240 and 1440 UTC times are not received).

DEA Hotspots portal data structure

- Data is structured by sensor and then by algorithm, giving the user the ability to turn layers on and off (Figure 2).
- DEA Hotspots may have different algorithms for the same satellite and sensors. E.g., DEA Hotspots has two versions of MOD14, as shown in Figure 2; "MOD14" and "Landgate MOD14".
- Users can also choose to filter the Hotspots displayed on the map by toggling the slide bars below the sensor drop downs. You can filter the display by:
 - Confidence
 - Temperature (in Kelvin)
 - Power
 - Time that the Hotspot was acquired

Note that not all Hotspot algorithms have the same attributes and some may be missing attributes required to apply some of these filters.

Figure 2: DEA Hotspots portal with the "Layers" panel toggled on the left-hand side of the screen. The Hotspots data here are organised by sensor, with the ability to turn the Hotspots algorithms on and off using the white drop-down menus, or by clicking the "x" next to the algorithm name to turn off an algorithm input.

Contact us

• For feedback or enquiries about DEA Hotspots, please contact earth.observation@ga.gov.au

Additional information

Digital Earth Australia website: https://www.dea.ga.gov.au/products/dea-hotspots

Hotspots – Data Access

DEA Hotspots can be accessed in the following ways:

Interactive web maps

- DEA Hotspots portal: https://hotspots.dea.ga.gov.au/
- National Map: https://nationalmap.gov.au/
- As a layer on DEA Maps: https://maps.dea.ga.gov.au/
 - Explore map data > Hazards

File access

https://hotspots.dea.ga.gov.au/files

Open Geospatial Consortium (OGC) compliant web services

- Web Map Services (WMS): https://hotspots.dea.ga.gov.au/geoserver/wms?service=wms&ver sion=1.3.0&request=getcapabilities
 - Allows users to view the Hotspots as a georeferenced composite image (e.g., PNG, GIF, JPEG)
 - Supports versions 1.1.1 and 1.3.0
- Web Feature Services (WFS): https://hotspots.dea.ga.gov.au/geoserver/wfs?service=wfs&versio n=2.0.0&request=getcapabilities
 - Allows users to obtain the Hotspots as geographical features (e.g., KML, CSV, GML, shapefiles)
 - Supports versions 1.0.0, 1.1.0 and 2.0.0

Notification services

- for users to access the last 72 hours of Hotspots data and metadata via:
 - Rich Site Summary (RSS): https://hotspots.dea.ga.gov.au/feeds/last_three_days.rss
 - Geographically Encoded Objects for Rich Site Summary feeds (GeoRSS): https://hotspots.dea.ga.gov.au/geoserver/wfs?service=WFS&request=GetFeature&t ypeNames=public:hotspots_three_days
 - Keyhole Markup Language (KML): https://hotspots.dea.ga.gov.au/geoserver/wms/kml?layers=public:hotspots_three_d ays
 - GeoJSON: https://hotspots.dea.ga.gov.au/data/recent-hotspots.json

Text files for the last 30 days

https://hotspots.dea.ga.gov.au/files/L3/hotspots

Imagery for VIIRS, MODIS and AVHRR

- Image data from which hotspots were derived
- under associated subfolder SRSS
 - e.g., https://hotspots.dea.ga.gov.au/files/L3/hotspots/MODIS/SRSS

GA Historic Hotspot database

- Historical archive of Hotspots since 2002
- https://hotspots.dea.ga.gov.au/files/historic
- See Sheet 4 for more information

Hotspots – Specification

Sheet 1 Provenance and Algorithms

	Brimany	MODIS (Terra and Aqua)		
		AVHRR Nighttime Imagery (NOAA-19)		
	i iiiiai y	VIIRS (Suomi NPP, NOAA-20)		
		AHI (Himawari-9)		
		Predicted satellite ephemeris data (location and attitude of the satellite)		
	Anaillan	Two Line Element (TLE) files		
Data Sauraa	Ancillary	Scan zenith angle and azimuth		
Data Sources		Solar zenith and azimuth		
		Emissivity		
		Acquisition day and time (in UTC) to compute sun position		
	Satellite	Image Size (number of pixels and lines)		
	Image Metadata	Image Cell Size		
	metauata	Location of the north-west corner of the image		
		Location of the centre of the image		
	• MOD14			
	– M (I 1 2	AOD14 Hotspots uses the Terra (MOD14) and Aqua MYD14) MODIS Thermal Anomalies Collection 6 at km resolution (Justice <i>et al.</i> , 2002; Giglio <i>et al.</i> , 016b).		
	- T fr d	hese products compute brightnesstemperatures om two 4µm channels (21 and 22, which saturate at ifferent temperatures) and channel 31 (11µm).		
	– C p a	Other channels are used to exclude 'bright', non-fire ixels(channels 1, 2 and 7) or cloud (channels 1, 2, 7 nd 32) (Giglio <i>et al.</i> , 2003b; Justice <i>et al.</i> , 2006).		
Major Algorithms (GA)	– T tł	This version of the algorithm uses dynamic fire nresholding to reduce the number of false positives dentified (Giglio <i>et al.</i> , 2016b).		
	• AFMOD			
	- T C ir a	The VIIRS M-band algorithm builds upon the MOD14 Collection 6 product (Giglio <i>et al.,</i> 2016b), incorporating code updates and methodological dvances (Giglio <i>et al.,</i> 2016a).		
	- T c w ra	The product uses channels M13 and M15 to identify andidate fire pixels and compares against the long- vave infrared channel M16 to screen out other adiometrically bright pixels such as clouds or sand.		
	– T re	his algorithm has been implemented at 350m esolution, taking advantage of the I-band resolution		

		of VIIRS (Space Science and Engineering Center, 2022).
	• 4	AFIMG
		 The VIIRS I-band algorithm is based on the 375m data described in Schroeder <i>et al.</i>, (2014) and uses a multi-spectral contextual algorithm that highlights sub-pixel thermal anomalies in level 1 data.
		 VIIRS channel I4 is used as the primary detector of thermal anomalies, and is compared against data from I5, which helps separate the fire-free background (Schroeder <i>et al.,</i> 2014; Schroeder and Giglio, 2018; Schroeder <i>et al.,</i> 2020).
	• N /	IOD14 : MOD14_SPA v.6.2.1 (Science Processing Algorithm)
Algorithm Version		 Community Satellite Processing Package (CSPP) VIIRS, ATMS and CrIS SDR v.3.3.1 for Suomi NPP and NOAA-20
(GA)		 CSPP NOAA Active Fire v.2.0.0
	• 4	AFMOD and AFIMG: v.6
		 CSPP VIIRS, ATMS and CrIS SDR v.3.3.1 for Suomi NPP and NOAA-20
		 CSPP NOAA Active Fire v.2.0.0
	• L	andgate MOD14
		 The MODIS nighttime algorithm is based on a 'contextual fire detection algorithm' (Lee and Tag, 1990, Flasse and Ceccato, 1996) with extra tests and thresholds modified to suit Australian conditions by Landgate.
		 The MODIS daytime algorithm is based on the MOD14 (Terra) and MYD14 (Aqua) Fire Image product (Justice et al., 2002) with extra tests for sunglint.
	• L	andgate AVHRR
Major Algorithms (Landgate)		 The AVHRR nighttime fire detection algorithm is based ona 'contextual fire detection algorithm' (Lee and Tag, 1990,Flasse and Ceccato, 1996) with extra tests and thresholdsmodified to suit Australian conditions by Landgate.
		 The AVHRR daytime fire detection algorithm is based on a contextual fire detection algorithm' with extra tests for cloud and sunglint using the visible bands.
	• L tt s p g a	 andgate VIIRS: The VIIRS AFIMG product is based on the 375m data described in Schroeder <i>et al.</i>, (2014) and uses a multi-spectral contextual algorithm that highlights sub-pixel thermal anomalies in level 1 data. SDR processing involves applying calibration (radiometric, geometric, engineering) and geo-locating using ephemeris and altitude and Earth model information. The VIIRS nighttime algorithm is based on a
		'contextual fire detection algorithm' (Lee and Tag.

	 1990, Flasse and Ceccato, 1996) with extra tests and thresholds modified tosuit Australian conditions by Landgate. The I4 channel (3.74 µm) is used to detect hotspots at 375m resolution. The VIIRS daytime algorithm is based on Schroeder <i>et al.</i>,2014 with extra tests and thresholds modified to suit Australian conditions by Landgate. Landgate AHI The AHI nighttime algorithm is based on a 'contextual fire detection algorithm' (Lee and Tag, 1990, Flasse and Ceccato, 1996) with extra tests and thresholds modified tosuit Australian conditions by Landgate. The AHI daytime fire detection algorithm is based on
	a'contextual fire detection algorithm' with extra tests forcloud and sunglint using the visible bands.
Algorithm Version (Landgate)	 Landgate MOD14: v.6.2.1 IMAPP MODIS: Landgate Nighttime algorithm v.6.2.1 MODIS: Landgate Daytime algorithm v.6.2.1 Landgate AVHRR: AVHRR: Landgate Nighttime algorithm v.1.0 AVHRR: Landgate Daytime algorithm v.1.0 Landgate VIIRS: VIIRS: Landgate Nighttime VIIRS algorithm v.6.0 VIIRS: Landgate Daytime VIIRS algorithm v.6.0 VIIRS: CSPP SDR v.3.1.1 and AFIMG v.6.0 Landgate AHI: AHI: Landgate Nighttime algorithm v.1 AHI: Landgate Daytime algorithm v.1
Major Algorithm (RMIT & BNHCRC) ¹	 BRIGHT AHI: The AHI day and night-time algorithms are based on the enhanced Biogeographical Region and Individual Geostationary HHMMSS Threshold (BRIGHT) algorithm for day and nighttime (Engel et al., 2021a and Engel et al., 2021b). BRIGHT uses the preceding 28-days to develop a dynamic thresholding for detecting potential hotspots. All hotspots are available on the Secure version of DEA Hotspots but only hotspots with at least 50% confidence are available on the public version of DEA Hotspots.
Algorithm Version (RMIT & BNHCRC)	BRIGHT AHI: BRIGHT AHI v.1.86 (Day and Night)

¹When using the BRIGHT hotspots for publication purposes, please cite Engel CB, Jones SD, Reinke KJ. (2021) Real-Time Detection of Daytime and Night-Time Fire Hotspots from Geostationary Satellites. *Remote Sensing*.13(9), 1627.

	MODIS
	 Validation of MODIS Fire Products has used simulated (Giglio <i>et al.</i>, 2003b; Justice <i>et al.</i>, 2006) and acquired (Morisette <i>et al.</i>, 2005; Schroeder <i>et al.</i>, 2008a, 2008b) Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery to validate hotspot detection.
	 MOD14 version 6 algorithm was validated against ASTER imagery that had been categorised for broad tree cover (Giglio <i>et al.</i>, 2016b).
	 MOD14 showed the highest detection probability globally over Australia and New Zealand (26%), however this statistic is skewed by the bigger fires observed in Australia and New Zealand which biases the mean to higher values when compared against the large number of small fires, which have a lower detection probability.
Validation of Underlying Algorithms	 MOD14 is more likely to miss fires in areas with low tree cover, where fire intensity is lower and there are warmer background conditions (Giglio <i>et al.</i>, 2016b).
	• BRIGHT
	 BRIGHT Hotspots from 01/04/2019 to 31/03/2020 were validated against VIIRS and MODIS hotspots from the same period (Engel <i>et al.</i>, 2021a and Engel <i>et al.</i>, 2021b).
	 The algorithm was shown to perform well over most of Australia, except for urban areas and volcanic landscapes.
	 Limitations in sensitivity were observed when compared to VIIRS and MODIS, however these were in part attributed to lower spatial resolution.
	Hotspots using other sensors and/or algorithms are validated to varying degrees, however peer-reviewed publications containing validations studies over Australia are not available.

Sheet 2 Technical Characteristics

Sheet 2.1 Product Spatial Details

Frequency	Based on available satellite data			
Temporal Extent	MODIS: from 27 August 2002 AVHRR: from 19 October 2006 VIIRS: from 21 February 2014 AHI: from 1 July 2015			
		Min latitude	-45	
	Geographic	Min longitude	105	
	Coverage	Max latitude	8	
		Max longitude	180	
	Projection	EPSG:4326 (https://epsg.io/4326)		
Spatial Extent	Accuracy	 The Hotspot local how detailed) is of 1.5 km AVHRR: ± MODIS: ± VIIRS: ± 0 AHI: ± 2 kr The Hotspot algo locations on source of the Hotspot algo locations on source of the Hotspots and within the of AVHRR, M Hotspots a mapped sp first reproje pixel of the longitude of top-left of the longitude of top-left of the points are the pixel. MODIS (M located in the pixel. AHI (RMIT located with noting the coordinate irregular gu hotspots. 	tion on any map (no matter only accurate at best to ± 1 km 1 km .375 km n rithms show different pixel ce satellite imagery: te Hotspots are located centre of the pixel (VIIRS, 10DIS, AHI). are calculated from bace where the imagery is ected to determine line and a Hotspot, with latitude and calculated based on the the image. IMG, AFMOD): Hotspot located within the centre of 10D14): Hotspots are the north-west corner of C & BNHCRC) Hotspots are thin the centre of the pixel, native Himawari-9 system which uses an rid is used for processing	

	 The geolocation of the imagery is linked to the nominal position of the satellite. Satellites like MODIS (Terra) have inbuilt Global Positioning System (GPS) and are more accurately geolocated than NOAA AVHRR.
	 There are known spurious Hotspots associated with poorly calibrated SDR input data (VIIRS-AFIMG) (Schroeder and Giglio, 2018). This may be seen as Hotspots occurring as a line across the map. These inaccurate Hotspots are routinely manually removed from the Hotspots map and database as part of the operational maintenance of the Hotspots system, however some may remain.

Sheet 2.2 Attributes

The attributes and metadata included with each Hotspot vary according to the access mechanism used to interact with the Hotspot information. E.g., the Hotspots portal contains a subset of these attributes, while the Geoscience Australia Historic Hotspot database (the Historic database) contains the full metadata record for each Hotspot		
	ID	Numeric ID assigned to the Hotspot
	Satellite	Name of the satellite platform that is carrying the sensor used to acquire the satellite data for hotspots calculation (e.g., Terra, Aqua, Suomi NPP, NOAA-20)
	Satellite_nssdc_id	National Space Science Data Centre (NSSDC) uniquesatellite number (<i>http://nssdc.gsfc.nasa.gov/nmc/</i>)
	Satellite_operating_a gency	Name of the agency providing the satellite data (e.g., NASA)
	Sensor	Name of the sensor used to detect the Hotspot (e.g., MODIS, VIIRS, AVHRR, AHI)
Hotspot Attributes	Orbit	The orbit number is determined using the information provided in the NORAD Two Line Element (TLE) file(s).The TLE file provides reference information foran "epoch" orbit that allows the current orbit to be calculated using the acquisition information. A value of -1 indicates the orbit is not
	Start_dt	Start date and time (in UTC) of the satellite pass acquisition
	Stop_dt	Stop date and time (in UTC) of the satellite pass acquisition. Note that Himawari-9, NOAA-20, and Suomi NPP do not have Stop_dt information.
	Filename	File name that the Hotspot is contained in and uses the following format: satellite_dateUTC_Hotspot.txt
	Process_dt	Date and time (in UTC) that the Hotspot was processed (file creation time)
	Process_algorithm	The name of the algorithm used to produce the Hotspot (e.g., MOD14, AFIMG, BRIGHT AHI).
	Process_algorithm_v ersion	Algorithm version number used to produce the Hotspot
	Product	Name of the product within the database (e.g., LANDGATE_AHI, MOD14)
	Load_dt	Date and time (in UTC) that the Hotspot was loaded into the database

		Hotspot latitude is based on WGS84 (°).	
Hotspot Attributes	Latitude	Units: signed decimal degrees Format: -dd.ddd Valid range: -90.000 to +90.000 Uncertainty: the latitude is no more accurate than the pixel size (e.g., MODIS 1km x 1km)	
	Longitude	Hotspot longitude is based on WGS84 (°). Units: signed decimal degrees Format: ddd.ddd Valid range: -180.000 to +180.000 Uncertainty: the longitude is no more accurate than the pixel size (e.g., MODIS 1km x 1km)	
	Temperature	 To detect the presence of a Hotspot, aset of detection criteria has been developed. These criteria (which differ for day and night observations) are based on: the absolute detection of a fire (when thefire strength is sufficient to be detected) detection relative to the difference between the fire pixel and its background temperature (to account for the variability of surface temperature and reflection by sunlight) (Justice <i>et al.</i>, 2006). For BRIGHT Hotspots, the 3.9µm brightness temperature as defined by the Himawari-9 satellite. Units: degrees Kelvin Format: nnn.n 	
	Power ²	 AVHRR, VIIRS, AHI and MODIS before April 2008 Do not have a Power attribute Null values or -1 MODIS after April 2008 Estimate of Fire Radiated Power (FRP) of Hotspot pixel (based on Justice <i>et al.</i>, 2006). BRIGHT Estimate of FRP of Hotspot pixel based on Wooster <i>et al.</i>, (2003) (Engel <i>et al.</i>, (2022)). No FRP value is indicated with -999. Units: Megawatt (MW) Format: <i>nnn n</i> 	

² The 'Power' attribute should not be confused with 'Fireline Intensity' which is a ground-based measurementtypically taken at the hottest part of the firefront as MW/m.

		Valid range: ≥ 0.0 (maximum observed value 1900.0)
		The Confidence attribute is intended to help users to gauge the quality of individual fire pixels within the fire mask. GA displays and provides all Hotspots, regardless of confidence. Users can choose to filter on the confidence attribute, according to their use case.
		MODIS MOD14 Fire Detection Algorithm
		 MOD14 Fire Detection Algorithm indication of the confidence that a Hotspot is a fire (Giglio <i>et al.</i>, 2003): 0-30% "low"
		 30-80% "nominal" 80.100% "bigh"
		AVHRR and AHI
	Confidence	 No Confidence is given as the algorithm does not calculate this attribute
		 The Hotspots portal includes a default confidence value of 50%
		BRIGHT AHI
		 Percentage confidence for each detected Hotspot (0-100%)
		VIIRS
		 Percentage confidence for each detected Hotspot (0-100%)
		Units: none (scalar value) Format: nnn
		Null values: Null or -1
		Time of acquisition for the data in which the Hotspot was detected (UTC). This is determined based on the start and end time of the acquisition. For the current satellites the level of accuracy should be of the order of 5 mins.
		Format:
	Datetime	YYYY-MM-DDThh:mm:ssZ (YYYY-MM-DDT Local time)
		where YYYY-MM-DD is the date, and Thh:mm:ssZ is the time in UTC
		There are different rules for observation timesfor different satellites:
		time is an estimated value based on the location of the Hotspot within the satellite

١./	0	\cap	
V	J	U	

		 acquisition and time range of the acquisition. Suomi NPP and NOAA (VIIRS and AVHRR): the observation time is an estimated value based on the mid-point of the time range of the satellite acquisition. Himawari-9 (AHI): the observation time is an estimated value based on the location of the Hotspot within the satellite acquisition and time range of the acquisition
-	Australian_state	State that the Hotspot was captured in (e.g., NSW, ACT, WA, NT, VIC, TAS, QLD, SA).
	Hours_since_hotspot	Hours since hotspot detection – only provided with web service access, and only correct at time of access.
	Accuracy	Accuracy of the Hotspot detection based on the resolution of the satellite used.

Hotspots – Data Licence

Sheet 3 Licensing and Attribution

Licence	Creative Commons 4.0 Attribution International license (CC BY 4.0 International).
Data attribution	 Landgate hotspot data attribution: © Western Australia Land Information Authority (Landgate) Attribution for use of BRIGHT hotspots location and date/time data. Engel, C.B., Jones, S.D., Reinke, K.J., (2021) Real-time detection of daytime and night-time fire hotspots from geostationary satellites. <i>Remote Sensing</i> 13(9), p.1627. Engel, C.B., Jones, S.D., Reinke, K.J., (2021) A seasonal-window ensemble-based thresholding technique used to detect active fires in geostationary remotely sensed data. <i>IEEE Transactions on Geoscience and Remote Sensing</i> 59(6), pp.4947-4956.
	 Attribution for use of BRIGHT hotspots FRP data. Engel, C.B., Jones, S.D. and Reinke, K.J., (2022) Fire Radiative Power (FRP) Values for Biogeographical Region and Individual Geostationary HHMMSS Threshold (BRIGHT) Hotspots Derived from the Advanced Himawari Imager (AHI). <i>Remote Sensing</i> 14(11), p.2540.
Disclaimer	The information displayed on DEA Hotspots (the "Service") is for general informational purposes only, and is not intended to provide any commercial, financial, or legal advice. DEA Hotspots is not to be used for safety of life decisions. Please see the GA website for the full disclaimer notice.
History	To read about GA's history of involvement in DEA Hotspots, see Reddy (2005), Hudson and Mueller (2009).

GA Historic Hotspot database

Hotspot pixels are identified and extracted from the satellite image into the GA Historic Hotspot database (the Historic database). The Historic database provides a complete and on-going record of Geoscience Australia's Hotspots product.

The Historic database is available via AWS in CSV, GeoJSON and Geography Markup Language (GML) formats.

The GA Historic Hotspots database is available at https://hotspots.dea.ga.gov.au/files/historic

The Historic database is broken up into three separate files. The table below details what data is contained within each file.

Note that the files are very large and are currently unable to be opened with standard tools like excel or Google Earth as they contain millions of records. Work is underway to make these files more user friendly. In the meantime, these files need to be accessed programmatically e.g., using Python.

Sheet 4 GA Historic Hotspot database			
File name	ahiwfabba-all-csv.zip ahiwfabba-all-geojson.zip		
Satellites / Sensor	Himawari-8 / AHI		
Algorithm / Data date range	WFABBA v.6.5.010g (Wild Fire Automated Biomass Burning Algorithm)	1/7/15 – 28/5/20	
Citations	Dozier 1981; McNamara <i>et al.</i> , 2004; Sc 2003	chmidt and Prins,	
Date range (all)	1/7/2015 – 28/5/2020		
Number of entries	15,202,290		
File name	all-data-csv.zip all-data-geojson.zip all-data-gml.zip		
Satellites / Sensor	Himawari-8 / AHI Himawari-9 / AHI Aqua / MODIS Terra / MODIS NOAA-17 / AVHRR NOAA-18 / AVHRR NOAA-19 / AVHRR NOAA-20 / VIIRS Suomi NPP / VIIRS		
Algorithm / Data date range	Himawari-8 AHI Landgate AHI v.1.0.0 SRSS AHI v.1.0.0 Himawari-9 AHI BRIGHT AHI v.1.86 	29/5/20 – 13/12/22 27/9/19 – 29/5/20 13/12/22 – present	

	 Landgate AHI v.1.0.0 	13/12/22 – present	
	MODIS		
	• MOD14 v.5.0.1, v.6.2.1	15/10/13 – present	
	 Landgate MODIS daytime v.6.2.1 	30/5/20 - present	
	Landgate MODIS Nighttime v.6.2.1	30/5/20 - present	
	SRSS MODIS daytime v.6.2.1	30/8/19 - 29/5/20	
	SRSS MODIS Nighttime v.6.2.1	30/8/19 - 29/5/20	
	 nan* v.4.2.0, v.4.3.1, v.5.0.1, v.6.2.1 	27/9/02 - present	
	NOAA-17 AVHRR		
	 nan* v.1.0.0 	19/10/06 – 28/8/11	
	NOAA-18 AVHRR		
	 nan* v.1.0.0 	19/10/06 - 24/4/14	
	NOAA-19 AVHRR		
	 Landgate AVHRR v.1.0.0 	29/5/20 - present	
	 SRSS AVHRR v.1.0.0 	29/9/19 - 28/5/20	
	 nan* v.1.0.0 	29/3/10 - 25/4/14	
	NOAA-20 VIIRS		
	AFIMG v.6	15/10/19 - present	
	AFMOD v.6	15/10/19 - present	
	 Landgate Daytime VIIRS algorithm v.6 	30/5/20 - present	
	 Landgate Nighttime VIIRS algorithm v.6 	30/5/20 – present	
	 SRSS Daytime VIIRS algorithm v.6 	15/10/19 - 29/5/20	
	 SRSS Nighttime VIIRS algorithm v.6 	15/10/19 - 29/5/20	
	Suomi NPP VIIRS		
	AFIMG v.6	30/8/19 - present	
	AFMOD v.6	30/8/19 - present	
	 Landgate Daytime VIIRS algorithm v.6 	30/5/20 - present	
	 Landgate Nighttime VIIRS algorithm v.6 	30/5/20 – present	
	 SRSS Daytime VIIRS algorithm v.6 	29/9/19 - 29/5/20	
	 SRSS Nighttime VIIRS algorithm v.6 	29/9/19 - 29/5/20	
	 VCM 1.0.000.002 v.6 	3/5/17 – 2/2/22	
	 VIIRS (AER) v.6 	21/2/14 - 14/9/17	
	* some of the earlier data entries are inco	mplete, including	
	missing the algorithm used to generate the	e hotspot. The	
Citations	VIIPS (AEP): Gilio, et al. 2003b. Baker et	t al 2011	
Citations	See also Sheet 1	<i>a</i> ., 2011	
Date range (all)	27 August 2002 – present		
Number of entries	32,370,816 (as of 17/07/23)		
	avhrr-ga-all-cev zin		
File name	avhrr-ga-all-geoison.zip		
Satellites / Sensor	NOAA-18 / AVHRR	-	
	NOAA-19 / AVHRR		

Algorithm / Data date range	GA AVHRR v.1.0.0	8/7/14 – 17/12/22
Date range (all)	8 July 2014 – 17 December 2022	
Number of entries	1,909,483	

References

- Bradley, A.V., and Millington, A.C. (2006) Spatial and temporal scale issues indetermining biomass burning regimes in Bolivia and Peru. *International Journal of Remote Sensing* 27(11), 2221-53.
- de Klerk, H. (2008) A pragmatic assessment of the usefulness of the MODIS(Terra and Aqua) 1-km active fire (MOD14A2 and MYD14A2) productsfor mapping fires in the fynbos biome. *International Journal of Wildland Fire* **17**(2), 166-178.
- Dozier, J. (1981), A method for satellite identification of surface temperaturefields of subpixel resolution. *Remote Sensing of Environment* **11**, 221-229.
- Engel, C.B., Jones, S.D., Reinke, K.J. (2021a) Real-Time detection of Daytime and Night-time fire hotspots from geostationary satellites. *Remote Sensing* **13**(9),1627.
- Engel, C.B., Jones, S.D., Reinke, K, J. (2021b) A seasonal-window ensemble-based thresholding technique used to detect active fires in geostationary remotely sensed data. *IEEE Transactions on Geoscience and Remote Sensing* **59**(6), 4947-4956.
- Engel, C.B.; Jones, S.D.; Reinke, K.J. (2022) Fire Radiative Power (FRP) Values for Biogeographical Region and Individual Geostationary HHMMSS Threshold (BRIGHT) Hotspots Derived from the Advanced Himawari Imager (AHI). *Remote Sensing* 14(11), 2540.
- Flasse, S.P., and Ceccato, P. (1996) A contextual algorithm for AVHRR firedetection. International Journal of Remote Sensing **17**(2), 419-424.
- Giglio, L., and Justice, C.O. (2003a) Effect of wavelength selection on characterisation of fire size and temperature. *International Journal of Remote Sensing* **24**(17), 3515-3520.
- Giglio, L., Descloitres, J., Justice, C.O., Kaufman, Y.J. (2003b) An Enhanced Contextual Fire Detection Algorithm for MODIS. *Remote Sensing of Environment* **87**(2-3), 273-282.
- Giglio, L., Schroeder, W., Csiszar, I., Tsidulko, M. (2016a) Algorithm theoretical basis document for NOAA NDE VIIRS active fire. Version 2.6. Retrieved from https://www.star.nesdis.noaa.gov/jpss/documents/ATBD/ATBD_NDE_AF_v2.6.pdf (last accessed 6/9/2023).
- Giglio, L., Schroeder, W., Justice, C.O. (2016b) The Collection 6 MODIS Active Fire Detection Algorithm and Fire Products. *Remote Sensing of Environment* **178**, 31-41.
- Hawbaker, T.J., Radeloff, V.C., Syphard, A.D., Zhu, Z, Stewart, S.I.(2008) Detection rates of MODIS active fire products in the United States. *Remote Sensing of Environment* **112**(5), 2656-2664.
- Hudson, D., and Mueller, N. (2009) Fighting fire with satellite dataset: Satellite imagery aids emergency relief. *AUSGEO News 94*, Geoscience Australia, Canberra. https://www.ga.gov.au/ausgeonews/ausgeonews200906/fire.jsp (last accessed 6/9/2023).
- Justice, C.O., Giglio, L., Korontzi, S., Owens, J., Morisette, J.T., Roy, D., Descloitres, J., Alleaume, S., Petitcolin, F., Kaufman, Y. (2002) The MODIS fire products. *Remote Sensing of Environment* **83**(1-2), 244-262.
- Justice, C., Giglio, L., Boschetti, L., Roy, D., Csiszar, I., Morisette, J., Kaufman, Y. (2006) MODIS Fire Products. Algorithm Technical Background Document. Version 2.3. MODIS Science Team, NASA. Retrieved from http://modis.gsfc.nasa.gov/data/atbd/atbd_mod14.pdf (last accessed 7/9/2023).
- Lee, T.F., and Tag, P.M. (1990). Improved detection of hotspots using the AVHRR 3.7 μm channel. *Bulletin of the American Meteorological Society* **71**(12), 1722-1730.
- McNamara, D., Stephens, G., Ruminski, M. (2004). The Hazard MappingSystem (HMS) NOAA's multi-sensor fire and smoke detection program using environmental satellites. Proceedings of the 13th Conference on Satellite Meteorology and Oceanography, Norfolk, Virginia, USA. *American Meteorology Society*.

- Morisette, J., Giglio, L., Csiszar, I., Justice, C.O. (2005) Validation of the MODIS active fire product over Southern Africa with ASTER data. *International Journal of Remote Sensing* **26**(19), 4239-4264.
- Reddy, S. (2005) Sentinel finds a permanent home at Geoscience Australia. *AUSGEO News* 80, Geoscience Australia, Canberra

http://www.ga.gov.au/ausgeonews/ausgeonews200512/inbrief.jsp (last accessed 7/9/2023).

- Schmidt, C.S., and Prins, E. (2003). GOES wildfire applications in the Western Hemisphere. Proceedings of the 2nd International Wildland Fire Ecology and Fire Management Congress and AMS 5th Symposium on Fire and Forest Meteorology, Orlando, Florida, USA.
- Schroeder, W., and Giglio, L. (2018). NASA VIIRS Land Science Investigator Processing System (SIPS) Visible Infrared Imaging Radiometer Suite (VIIRS) 375 m & 750 m Active Fire Products. Product User's Guide Version 1.4. NASA. https://lpdaac.usgs.gov/documents/427/VNP14_User_Guide_V1.pdf (last accessed 7/9/2023).
- Schroeder, W., Giglio, L., Csiszar, I., Tsidulko, M., (2020) Algorithm Theoretical Basis Document For NOAA NDE VIIRS I-band (375m) Active Fire. Version 1.0. NOAA. https://www.star.nesdis.noaa.gov/jpss/documents/ATBD/ATBD_lband_ActiveFires_v1.0.pdf (last accessed 7/9/2023).
- Schroeder, W., Oliva, P., Giglio, L., Csiszar, I.A. (2014). The new VIIRS 375m active fire detection product: algorithm description and initial assessment. *Remote Sensing of the Environment* **143**, 85-96.
- Schroeder, W., Prins, E., Giglio, L., Csiszar, I., Schmidt, C., Morisette, J., Justice, C.O. (2008a) Validation of GOES and MODIS active fire detection products using ASTER and ETM+ data. *Remote Sensing of Environment* **112**(5), 2711-2726.
- Schroeder, W., Ruminski, M., Csiszar, I., Giglio, L., Prins, E., Schmid, C., Morisette, J. (2008b) Validation of analyses of an operational fire monitoring product: The Hazard Mapping System. *International Journal of Remote Sensing* **29**(20), 6059-6066.
- Smith, R., Adams, M., Maier, S., Craig, R., Kristina, A., Maling, I. (2007) Estimating the area of stubble burning from the number of active fires detected by satellite. *Remote Sensing of Environment* **109**(1), 95-106.
- Space Science and Engineering Center. (2022) Installation Instructions for the Community Satellite Processing Package (CSPP) VIIRS Active Fire Software Version 2.0. Last updated 2 June 2022. University of Wisconsin-Madison.
- Wooster MJ, Zhukov B, Oertel D (2003) Fire radiative energy for quantitative study of biomass burning: derivation from the BIRD experimental satellite and comparison to MODIS fire products. *Remote Sensing of Environment* **86**(1), 83–107.

Glossary

AFIMG	VIIRS Imager Resolution (375m) NOAA-20 and Suomi NPP Sensor Data Records
AFMOD	VIIRS Moderate Resolution (750m) NOAA-20 and Suomi NPP Sensor Data Records
Aqua	NASA satellite collecting data on Earth's water cycle (USA)
AER	Atmospheric and Environmental Research
AHI	Advanced Himawari Imager (JMA)
ASTER	Advanced Space-borne Thermal Emission and Reflectance Radiometer
ATMS	Advanced Technology Microwave Sounder
AVHRR	Advanced Very High Resolution Radiometer
AWS	Amazon Web Services
BNHCRC	Bushfires and Natural Hazards Cooperative Research Centre
BRIGHT	Biogeographical Region and Individual Geostationary HHMMSS Threshold algorithm
CrIS	Cross-track Infrared Sounder
CSPP	Community Satellite Processing Package
CSV	Comma separated values
DEA	Digital Earth Australia (GA)
FRP	Fire Radiated Power
GA	Geoscience Australia
GeoJSON	Geospatial data interchange format based on JavaScript Object Notation
GeoRSS	Geographically Encoded Objects for Rich Site Summary (notification service)
GML	Geography Markup Language
GPS	Global Positioning System
IMAPP	Algorithm that produces MODIS Level 2 Cloudmask, Cloudtop Properties, Cloud Phase, Atmospheric Profiles, and Aerosol https://cimss.ssec.wisc.edu/imapp/
JMA	Japan Meteorological Agency
KML	Keyhole Markup Language
MODIS	MODerate resolution Imaging Spectroradiometer (NASA)
MOD14	MODIS Terra Thermal Anomalies product
MYD14	MODIS Aqua Thermal Anomalies product

MW	Megawatts
NASA	National Aeronautics and Space Administration (USA)
NOAA	National Oceanic and Atmospheric Administration (USA)
NORAD	North American Aerospace Defense Command (USA)
NPP	National Polar-orbiting Partnership (USA)
OGC	Open Geospatial Consortium
RMIT	Royal Melbourne Institute of Technology
RSS	Rich Site Summary (notification service)
SDR	Sensor Data Record
SPA	Science Processing Algorithm
SRSS	Satellite Remote Sensing Services (former name for Landgate Imagery team)
Suomi NPP	Suomi National Polar-orbiting Partnership
Terra	NASA satellite collecting data on Earth's land processes (USA)
TLE	Two Line Element
UTC	Coordinated Universal Time or Universal Time Coordinated
VIIRS	Visible Infrared Imaging Radiometer Suite
WFABBA	Wild Fire Automated Biomass Burning Algorithm
WFS	Web Feature Service
WGS	World Geodetic System
WMS	Web Map Service
XML	Extensible Mark-up Language